6月5日晚7点,香港科技大学在读博士刁诗哲将参与到「大型语言模型技术公开课」第三讲的直播中,主讲《低成本训练专属 的开源框架 》。
的出现,让许多人开始对科研的方向和未来感到迷茫:如何能够参与到通用人工智能的研究中,在这个大型模型横行的时代找到自己的优势?很多人也都希望有能力训练一个只属于自己的 AI 大模型。现阶段尽管已经有很多开源的类 GPT 产品,但对于普通的学者、研究者和程序员来说,这样的产品仍不足以适应每一个人的需求。
不仅仅是因为从头预训练的高昂成本,另一方面,也是因为基于 API 的黑盒封装不是完美的解决方案。基于 API 的应用虽然很容易开发,但从使用效果和自定义程度上来说并不尽人意。因此,从头预训练和基于 API 开发都不是最佳方式。
来自香港科技大学统计和机器学习实验室团队的研究者们发起的 平替开源方案: ,可以帮助个人和中小企业解决上述问题,即在低成本的情况下微调出一个垂直领域、个性化的专属,从而满足自己的需求。
针对有限的计算资源,通过 开源库,基于LLaMA-7B,只需 1 张 3090、耗时 5 个小时,就可以训练一个专属于自己的个性化 GPT,并完成网页端部署。该团队还利用 单机训练了一个 330 亿参数的 LLaMA 中文版,并且对模型权重进行了开源,用于学术研究。
在本次公开课中,刁诗哲首先会比较当前不同的大模型微调开源框架,帮助大家选择适合自己需求的框架,之后深度讲解低成本微调全流程框架 ,全新、高效、稳定的对齐算法——RAFT,以及支持多模态复杂推理和目标检测的微调方案——。这些工具的使用能够帮助个人和中小企业在低成本的情况下微调出一个垂直领域、个性化的专属 ,从而满足自己的需求。
© 版权声明
文章版权归作者所有,未经允许请勿转载。
相关文章
暂无评论...