随着生成式人工智能(尤其是 ChatGPT)的爆炸性普及,提示对于人工智能领域的人们来说已成为一项越来越重要的技能。制作提示,即与 ChatGPT 等大型语言模型 (LLM) 交互的机制,并不是乍看起来那么简单的语法任务。在第一次与 ChatGPT 交流的新鲜感之后,很明显需要练习和思考才能迅速掌握。因此,323导航网开发流程来创建最有用的提示(称为提示工程)已成为法学硕士领域及其他领域令人垂涎的专业知识。
在这篇文章中,您将了解即时工程。尤其,
- 如何在提示中提供对响应影响最大的信息
- 什么是人物角色、正面和负面提示、零样本提示等
- 如何迭代使用提示来利用 ChatGPT 的对话性质
让我们开始吧。

与 ChatGPT 进行有效交互的快速工程
概述
这篇文章分为三个部分;他们是
- 提示原则
- 基本即时工程
- 先进的即时工程策略
- 协作电源技巧
-
提示原则
快速工程是有效利用 LLM 的最重要方面,也是定制与 ChatGPT 交互的强大工具。它涉及制定清晰且具体的指令或查询,以从语言模型中得出所需的响应。通过仔细构建提示,用户可以引导 ChatGPT 的输出实现其预期目标,并确保更准确和有用的响应。
在 ChatGPT 的即时优化过程中需要记住一些基本技术。
首先,在提示开头提供明确的指令有助于设置上下文并定义模型的任务。指定预期答案的格式或类型也是有益的。此外,您可以通过在提示中加入系统消息或角色扮演技术来增强交互。
下面是使用上述技术的示例提示:
我希望您为食谱博客生成 10 个快速准备晚餐的想法,每个想法都包含一个标题和对这顿饭的一句话描述。这些博客是为寻找易于准备的家庭膳食的父母受众编写的。将结果输出为项目符号列表。
将该提示与以下内容进行比较:
写 10 篇食谱博客。
直观上,前者会获得更有用的结果。
请记住,您可以通过迭代地改进和试验提示来提高模型响应的质量和相关性,从而创建更富有成效的对话。不要害怕直接在 ChatGPT 上测试潜在的提示。
基本即时工程
现在您已经知道基本提示应该是什么样子了,让我们更详细地探讨一些基本的提示工程注意事项。
提示措辞
提示的措辞至关重要,因为它指导法学硕士生成所需的输出。以 ChatGPT 能够理解并准确回应的方式表达问题或陈述非常重要。
例如,如果用户不是某个领域的专家并且不知道表达问题的正确术语,ChatGPT 可能会遇到他们提供的答案受到限制。这类似于在不知道正确关键字的情况下在网络上搜索。
虽然很明显可以使用附加信息来创建更好的提示,但一般来说过于冗长不一定是最佳策略,这一点可能不太明显。最好不要将提示措辞视为一种单独的技术,而是将其视为连接所有其他技术的线索。
简洁
提示的简洁对于清晰度和精确性非常重要。精心设计的提示应该简洁明了,为 ChatGPT 提供足够的信息来理解用户的意图,但又不会过于冗长。然而,确保提示不要太简短至关重要,否则可能会导致歧义或误解。不够和太多之间的平衡可能很难实现。练习可能是掌握这项技能的最好方法。
提示中的措辞和简洁性很重要,因为它是为了具体化。
角色和目标
在即时工程中,角色是为法学硕士和目标受众分配的角色。例如,如果有人有兴趣让 ChatGPT 为一篇关于机器学习分类指标的博客文章撰写大纲,明确说明法学硕士将充当专家机器学习实践者,并且其目标受众是数据科学新手,这肯定会有助于提供富有成效的回应。是否应该用对话语言(“你将担任在凤凰城地区有 10 年经验的房地产经纪人”)或以更正式的方式(“作者:凤凰城房地产经纪人专家;受众:缺乏经验的家庭”)来表述买家“)可以在给定的场景中进行实验。
目标与角色密切相关。明确说明提示引导交互的目标不仅是一个好主意,而且是必要的。如果没有它,ChatGPT 如何知道要生成什么输出?
以下是考虑了角色和目标的有效提示:
您将担任一名在凤凰城地区拥有 10 年经验的房地产经纪人。您的目标是用一段文字总结菲尼克斯都市区排名前 5 的家庭社区。目标受众是没有经验的购房者。
除了明确陈述的角色和目标之外,请注意上面示例提示的相对特殊性。积极和消极的提示
正负提示是指导模型输出的另一套框架方法。积极的提示(“执行此操作”)鼓励模型包含特定类型的输出并生成特定类型的响应。另一方面,负面提示(“不要这样做”)会阻止模型包含特定类型的输出并生成特定类型的响应。使用正面和负面提示可以极大地影响模型输出的方向和质量。
考虑以下示例提示:
您将担任一名在凤凰城地区拥有 10 年经验的房地产经纪人。您的目标是用一段文字总结菲尼克斯都市区排名前 5 的家庭社区。目标受众是没有经验的购房者。
上述提示的框架本质上是积极的,为 ChatGPT 应生成的内容提供了指导。让我们添加一些措辞来阻止某些输出,无论是内容还是格式。针对内容指导的负面提示的一个示例可以是在上面的示例中添加以下内容:
请勿包括距市中心 5 英里以内或机场附近的任何社区。
这个额外的约束应该有助于 ChatGPT 理解它应该生成什么输出。
先进的即时工程策略
让我们看看一些更高级的即时工程策略。虽然上一节提供了与 LLM 交互的一些一般准则,但您可以转向提示工程师工具包中常见的各种当代策略,以便能够以更复杂的方式与 ChatGPT 交互。
输入/输出提示
输入/输出提示策略涉及定义用户向 LLM 提供的输入以及 LLM 作为响应生成的输出。该策略对于促进工程至关重要,因为它直接影响 ChatGPT 响应的质量和相关性。
例如,用户可能会提供输入提示,要求 ChatGPT 为特定任务生成 Python 脚本,所需的输出将是生成的脚本。
下面是最基本策略的示例:提供单个输入并期望单个输出。
生成一个 Python 脚本,该脚本采用单个强制命令行参数 ([project]) 并执行以下任务:
– 创建一个名为 [project] 的新文件夹
– 在名为 [project].py 的新文件夹中创建一个文件
– 编写一个简单的Python脚本文件头到[project].py文件零样本提示
零样本策略涉及法学硕士在没有任何示例或上下文的情况下生成答案。当用户想要快速回答而不提供额外细节时,或者当主题过于笼统以至于示例会人为地限制响应时,此策略可能很有用。例如:
为我的新狗生成 10 个可能的名字。
一键提示
一次性策略涉及法学硕士根据用户提供的单个示例或上下文生成答案。该策略可以指导 ChatGPT 的响应并确保其符合用户的意图。这里的想法是,一个例子将为模型提供比没有更多的指导。例如:
为我的新狗生成 10 个可能的名字。
我喜欢的狗名字是香蕉。少发提示
少样本策略涉及法学硕士根据用户提供的一些示例或上下文片段生成答案。该策略可以指导 ChatGPT 的响应并确保其符合用户的意图。这里的想法是,多个示例将为模型提供比单个示例更多的指导。例如:
为我的新狗生成 10 个可能的名字。
我喜欢的狗名字包括:
– 香蕉
– 猕猴桃
– 菠萝
– 椰子正如您所猜测的,提示中包含的示例越多,生成的输出就越接近所需的结果。对于零样本,可能不会建议任何水果名称;如果是一次,则可能有多个;在很少的情况下,建议可能完全由水果主题的名称组成。
一键提示
一次性策略涉及法学硕士根据用户提供的单个示例或上下文生成答案。该策略可以指导 ChatGPT 的响应并确保其符合用户的意图。这里的想法是,一个例子将为模型提供比没有更多的指导。例如:
为我的新狗生成 10 个可能的名字。
我喜欢的狗名字是香蕉。少发提示
少样本策略涉及法学硕士根据用户提供的一些示例或上下文片段生成答案。该策略可以指导 ChatGPT 的响应并确保其符合用户的意图。这里的想法是,多个示例将为模型提供比单个示例更多的指导。例如:
为我的新狗生成 10 个可能的名字。
我喜欢的狗名字包括:
– 香蕉
– 猕猴桃
– 菠萝
– 椰子正如您所猜测的,提示中包含的示例越多,生成的输出就越接近所需的结果。对于零样本,可能不会建议任何水果名称;如果是一次,则可能有多个;在很少的情况下,建议可能完全由水果主题的名称组成。
思维链提示
思路链策略包括为法学硕士提供一些示例,帮助完善原始问题并确保得到更准确和全面的答案。所谓思路提示,是因为提示中包含了一些思路示例。它与 X-shot 提示技术不同,因为思维链提示的结构是为了鼓励批判性思维,并且旨在帮助发现 ChatGPT 可能没有考虑到的新见解或方法。
该技术还鼓励法学硕士输出其批判性推理。思维链提示的名片是“让我们一步一步思考”这句话,它通常附加在提示的末尾,研究表明这足以改善生成的结果。
考虑以下一次性提示示例:
问:乔有 20 个鸡蛋。他又买了两盒鸡蛋。每箱装有 12 个鸡蛋。乔现在有多少个鸡蛋?
答:答案是44。问:农夫约翰有 93 只鸡。如果他把 20 只卖给农夫比尔,然后又买了两倍数量的鸡,那么农夫约翰现在有多少只鸡?
并考虑 ChatGPT 的错误输出响应:
答案是73。
现在让我们看一下下面的思维提示链,它是为鼓励法学硕士的批判性思维而编写的:
问:乔有 20 个鸡蛋。他又买了两盒鸡蛋。每箱装有 12 个鸡蛋。乔现在有多少个鸡蛋?让我们一步步思考。
A:乔一开始有 20 个鸡蛋。2盒12个鸡蛋就是24个鸡蛋。20 + 24 = 44。因此,乔有 44 个鸡蛋,答案是 44。问:农夫约翰有 93 只鸡。如果他把 20 只卖给农夫比尔,然后又买了两倍数量的鸡,那么农夫约翰现在有多少只鸡?让我们一步步思考。
这次 ChatGPT 的回应有所不同:
答:农夫约翰向农夫比尔卖了 20 只鸡,所以他剩下 93 – 20 = 73 只鸡。然后他买了两倍于他卖掉的鸡的数量,所以他买了 2 * 20 = 40 只鸡。将这些新买的鸡添加到他剩余的棍子上,农夫约翰现在有 73 + 40 = 113 只鸡。
通过提供解决此问题所需的批判性思维过程的示例,并指导其逐步思考,ChatGPT 可以将相同的推理应用于我们的问题,并得出正确的答案。
协作电源技巧
看待 ChatGPT 的最佳方式是作为初级助理,无论是研究助理、编码助理、问题解决助理,还是您需要的任何助理。认识并培养这种协作氛围可以带来进一步的成功。以下是促进这种合作的一些快速提示。
提示提示
改进提示制作的一种方法是让 ChatGPT 参与其中。像这样的提示可能会带来有益的结果:
我现在可以使用什么提示来进一步帮助您完成此任务?
然后,ChatGPT 应该生成有用提示的建议,您可以使用它来加强其进一步的响应。
模型引导提示
模型引导提示涉及指示法学硕士提示您完成所请求的任务所需的信息。这类似于告诉某人“问我你需要知道什么”。
我希望你编写一个 Python 程序来管理我的客户信息,这些信息存储在 Google Sheet 中。为了完成这项任务,请询问我您需要回答的任何问题。
让 ChatGPT 来决定执行任务所需的信息是有益的,因为它可以消除一些猜测并阻止幻觉。当然,模型引导提示的精心设计的提示可能会让您从 ChatGPT 中回答许多不相关的问题,因此最初的提示仍然需要经过深思熟虑地编写。
结论
一旦您熟悉了此处列出的即时工程策略,您就可以寻找其他更复杂、高性能的方法。AI导航网其中一些策略包括思想树、反思和自我一致性等。正在定期制定其他战略;毫无疑问,从撰写本文到您阅读本文期间,这方面已经出现了一些有趣的进展。
请记住,即时工程的重点是以 LLM 可以清楚、明确地理解的方式向 ChatGPT 传达您的意图和愿望,以便它能够根据请求采取行动,产生与期望的输出尽可能接近的结果。可能的。如果您牢记这一点,继续执行所提出的策略,并通过定期练习磨练您的即时工程技能,您会发现 ChatGPT 是一个真正有用的初级助手,愿意并且能够在您需要时提供帮助。