chatgpt是用什么语言编写的 ChatGPT 原理与核心技术介绍(自然语言处理NLP的发展与Transform

默认分类1年前 (2023)发布 admin
4,027 0
ChatGPT国内版

文章目录

1、定义:与自然语言处理NLP

(Chat Pre- )是自然语言处理( ,NLP)领域的一种AI模型。NLP是人工智能的一个分支,专注于处理人们日常生活中使用的各种自然语言,如英语、汉语、德语等。其目标是让计算机能够理解和准确操作自然语言,以完成人类指定的任务。在NLP中,常见的任务包括文本关键词抽取、文本分类、机器翻译等。

NLP中还存在一个非常具有挑战性的任务,即对话系统,也被广泛称为聊天机器人。而正是为了实现这一任务而设计的模型。它通过预先进行训练和生成技术,使得计算机能够模拟人类的对话方式,从而实现智能化的对话交互。聊天机器人能够回答用户的问题、参与有趣的对话,并提供相关的信息和建议。

的出现为NLP领域带来了巨大的进展,它的应用潜力非常广泛。不仅可以用于社交娱乐领域,还可以应用于客户服务、虚拟助手、语言学习等各种场景。通过,我们能够以一种更智能、更自然的方式与计算机进行交流,为人们带来更加便利和丰富的体验。

1.1 图灵测试

自从1950年代计算机问世以来,人们就开始研究如何让计算机辅助人类理解和处理自然语言。这也是自然语言处理( ,NLP)领域的发展目标之一,而最著名的里程碑则是图灵测试。

在1950年,计算机之父艾伦·图灵(Alan )提出了一项测试,用于评估机器是否能像人类一样进行思考。这就是著名的图灵测试。图灵测试的具体方法和现在的工作方式一模一样,即通过构建一个计算机对话系统,让人类与被测试的模型进行对话交流。如果测试者无法确定对方究竟是机器模型还是另一个人,那么该模型就通过了图灵测试,被认为具备智能。

长期以来,图灵测试被学术界视为攀登的难题。正因如此,NLP被誉为人工智能皇冠上的明珠。而所能够完成的工作已远远超出了传统聊天机器人的范畴。它可以根据用户的指令撰写文章,回答技术问题,解决数学题,进行外文翻译,甚至参与文字游戏等等。因此,在某种程度上,已经脱颖而出,不再是皇冠上的明珠。它为我们展示了一种全新的人机交互方式,拓宽了人工智能的应用领域。

1.2 建模形式(多轮历史对话原理)

以其简单直观的工作方式而闻名。用户可以向提出任何问题,而模型会给出回答。

在这个过程中,用户的输入和模型的输出都是以文字形式进行。一次用户的输入和一次模型的回答被称为一轮对话。我们可以将的工作流程抽象成以下形式:

chatgpt是用什么语言编写的 ChatGPT 原理与核心技术介绍(自然语言处理NLP的发展与Transform

此外,还可以处理用户的连续提问,也就是多轮对话,这些对话之间是有信息关联的。这个过程也很简单,当用户进行第二次输入时,系统会默认将前一轮对话的输入和输出信息连接在一起,供参考前一轮对话的上下文。

如果用户与的对话进行了多轮,通常模型只会保留最近几轮对话的信息,之前的对话信息会逐渐被遗忘。

当用户输入问题:“你喜欢苹果还是香蕉?”,接收到这个数据后,首先会生成一个“我”的字,然后根据用户的问题和生成的“我”字继续生成下一个字“喜”。以此类推,直到生成一个完整的句子:“我喜欢苹果。”

1.3 NLP 的发展历程(规则->统计->强化学习)

基于强化学习的自然语言处理(NLP)模型如

1.4 NLP 技术的发展脉络

实际上,基于规则、基于统计、基于强化学习 这 三种方式,并不仅仅是一种处理自然语言的手段,而是一种思想。一个解决某一问题的算法模型,往往是融合了这三种解决思想的产物。

如果把计算机比作一个小孩,自然语言处理就像是由人类来教育小孩成长。

基于规则的方式,就好比家长 100% 控制小孩,要求他按照自己的指令和规则行事,如每天规定学习几小时,教会小孩每一道题。整个过程,强调的是手把手教,主动权和重心都在家长身上。对于 NLP 而言,整个过程的主动权和重心,都在编写语言规则的程序员、研究员身上。

基于统计的方式,就好比家长只告诉小孩学习方法,而不教授具体每一道题,强调的是半引导。对于 NLP 而言,学习重心放在神经网络模型上,但主动权仍由算法工程师控制。

基于强化学习的方式,则好比家长只对小孩制定了教育目标,比如,要求小孩能够考试达到 90 分,但并不去管小孩他是如何学习的,全靠自学完成,小孩拥有极高的自由度和主动权。家长只对最终结果做出相应的奖励或惩罚,不参与整个教育过程。对于 NLP 来说,整个过程的重心和主动权都在于模型本身。

chatgpt是用什么语言编写的 ChatGPT 原理与核心技术介绍(自然语言处理NLP的发展与Transform

NLP 的发展一直以来都在逐渐向基于统计的方式靠拢,最终由基于强化学习的方式取得完全的胜利,胜利的标志,即 的问世;而基于规则方式逐渐式微,沦为了一种辅助式的处理手段。 模型的发展,从一开始,就在坚定不移地沿着让模型自学的方向发展进步着。

1.5 的神经网络结构

是一个大型的神经网络,其内部结构是由若干层 构成的, 是一种神经网络的结构。自从 2018 年开始,它就已经成为了 NLP 领域的一种通用的标准模型结构, 几乎遍布各种 NLP 模型之中。

如果说, 是一幢房子的话,那么, 就是构建 的砖头。

的核心是自注意力机制(Self-),它可以帮助模型在处理输入的文字序列时,自动地关注到与当前位置字符相关的其他位置字符。自注意力机制可以将输入序列中的每个位置都表示为一个向量,这些向量可以同时参与计算,从而实现高效的并行计算。举一个例子:

在机器翻译中,在将英文句子 “I am a good ” 翻译成中文时,传统的机器翻译模型可能会将其翻译成 “我是一个好学生”,但是这个翻译结果可能不够准确。英文中的冠词“a”,在翻译为中文时,需要结合上下文才能确定。

而使用 模型进行翻译时,可以得到更加准确的翻译结果,例如 “我是一名好学生”。

这是因为 能够更好地捕捉英文句子中,跨越很长距离的词汇之间的关系,解决文本上下文的长依赖。

总结

随着时间的推移,自然语言处理(NLP)领域的发展已经从人工编写规则和逻辑控制计算机程序逐渐转变为完全依靠网络模型来适应语言环境的过程。

目前,是最接近通过图灵测试的NLP模型,未来的GPT4、GPT5将进一步接近这个目标。

是一种生成式的对话系统,其工作流程可以描述为以下几个步骤。

© 版权声明
广告也精彩

相关文章

暂无评论

暂无评论...