ai炼丹软件 出神入化:李飞飞高徒、特斯拉AI主管Karpathy的33个神经网络「炼丹」技巧!

默认分类2个月前发布 admin
3,002 0
ChatGPT国内版

分享这篇文章之前,先感叹几句:世界真的是太奇妙了!

为啥这么说呢,听我慢慢说来,今天下午因为工作上需要,在查看 官网中 on data 介绍时,在针对神经网络偏置bias初始化时,引入了一篇他人文章,因为我是这样一个人:如果我觉得某篇文章很棒,我会去追踪源头。所以我就顺势打开了 借鉴的那篇文章,映入我眼帘的是一篇英文博客,看了下标题:A for ,标题很普通,再瞅了瞅正文,看了几段后,发现这文章写的时真心是哇。

然后心想着,什么时候是不是能翻译下这篇文章呢。结果过了2个多小时,神奇的事情发生了:我无意间发现了机器之心之前发过了一篇文章,标题为:出神入化:特斯拉AI主管、李飞飞高徒的33个神经网络「炼丹」技巧,等我打开一瞅。我去,这不就是我下午看到的英文博客的中文翻译么!

所以我就转载分享下,这篇文章干货非常多,技巧非常有用,值得大家慢慢来读!以下是正文内容(因为文章很赞,所以我也将文章中的技巧进行了打包下载,需要的同学可以自行去文章末尾领取):

———————————————-

特斯拉人工智能部门主管 发布他的新博客,介绍神经网络训练的技巧。

是深度学习计算机视觉领域、与领域的研究员。博士期间师从李飞飞。在读博期间,两次在谷歌实习,研究在 视频上的大规模特征学习,2015 年在 实习,研究深度强化学习。毕业后, 成为 的研究科学家,后于 2017 年 6 月加入特斯拉担任人工智能与视觉总监。

今日他发布的这篇博客能为深度学习研究者们提供极为明晰的洞见,在 上也引发了极大的关注。

1. 谁说神经网络训练简单了?

很多人认为开始训练神经网络是很容易的,大量库和框架号称可以用 30 行代码段解决你的数据问题,这就给大家留下了(错误的)印象:训练神经网络这件事是非常简单的,不同模块即插即用就能搭个深度模型。

简单的建模过程通常如下所示:

>>> your_data = # plug your awesome dataset here>>> model = SuperCrossValidator(SuperDuper.fit, your_data, ResNet50, SGDOptimizer)# conquer world here

这些库和示例令我们想起了熟悉标准软件及模块,标准软件中通常可以获取简洁的 API 和抽象。

例如 库的使用展示如下:

>>> r = requests.get('https://api.github.com/user', auth=('user', 'pass'))>>> r.status_code200

酷!这些库和框架的开发者背负起理解用户 Query 字符串、url、GET/POST 请求、HTTP 连接等的大量需求,将复杂度隐藏在几行代码后面。这就是我们熟悉与期待的。

ai炼丹软件 出神入化:李飞飞高徒、特斯拉AI主管Karpathy的33个神经网络「炼丹」技巧!

然而,神经网络不一样,它们并不是现成的技术。我在 2016 年撰写的一篇中试图说明这一点,在那篇文章中我认为反向传播是「leaky 」,然而现在的情况似乎更加糟糕了。

+ SGD 不是魔法,无法让你的网络运行;批归一化也无法奇迹般地使网络更快收敛;RNN 也不能神奇地让你直接处理文本。不要因为你可以将自己的问题表示为强化学习,就认为你应该这么做。如果你坚持在不理解技术原理的情况下去使用它,那么你很可能失败。

2. 背着我不 work 的神经网络

当你破坏代码或者错误配置代码时,你通常会得到某种异常。你在原本应该插入字符串的地方插入了整数;导入出错;该关键字不存在……此外,为了方便 debug,你还很可能为某个功能创建单元测试。

这还只是开始。训练神经网络时,有可能所有代码的句法都正确,但整个训练就是不对。可能问题出现在逻辑性(而不是句法),且很难通过单元测试找出来。

例如,你尝试截损失度而不是梯度,这会导致训练期间的异常值被忽视,但语法或维度等检测都不会出现错误。又或者,你弄错了正则化强度、学习率、衰减率、模型大小等的设置,那么幸运的话网络会报错,然而大部分时候它会继续训练,并默默地变糟……

因此,「快速激烈」的神经网络训练方式没有用,只会导致困难。现在,这些经验性困难是使神经网络正常运行的拦路虎,你需要更加周密详尽地调试网络才能减少困难,需要大量可视化来了解每一件事。

在我的经验中,深度学习成功的重要因素是耐心和注重细节。

如何解决

基于以上两点事实,我开发了一套将神经网络应用于新问题的特定流程。该流程严肃地执行了上述两项原则:耐心和注重细节。

具体来说,它按照从简单到复杂的方式来构建,我们在每一步都对即将发生的事作出准确的假设,然后用实验来验证假设或者调查直到发现问题。我们试图尽力阻止大量「未经验证的」复杂性一次来袭,这有可能导致永远也找不到的 bug/错误配置。如果让你像训练神经网络那样写它的代码,你会想使用非常小的学习率,然后猜测,再在每次迭代后评估整个测试集。

1. 梳理数据

训练神经网络的第一步是不要碰代码,先彻底检查自己的数据。这一步非常关键。我喜欢用大量时间浏览数千个样本,理解它们的分布,寻找其中的模式。幸运的是,人类大脑很擅长做这件事。有一次,我发现数据中包含重复的样本,还有一次我发现了损坏的图像/标签。我会查找数据不均衡和偏差。我通常还会注意自己的数据分类过程,它会揭示我们最终探索的架构。比如,只需要局部特征就够了还是需要全局语境?标签噪声多大?

此外,由于神经网络是数据集的压缩/编译版本,你能够查看网络(错误)预测,理解预测从哪里来。如果网络预测与你在数据中发现的不一致,那么一定是什么地方出问题了。

在你对数据有了一些感知之后,你可以写一些简单的代码来搜索/过滤/排序标签类型、标注规模、标注数量等,并沿任意轴可视化其分布和异常值。异常值通常能够揭示数据质量或预处理中的 bug。

2. 配置端到端训练/评估架构、获取基线结果

ai炼丹软件 出神入化:李飞飞高徒、特斯拉AI主管Karpathy的33个神经网络「炼丹」技巧!

现在我们已经理解了数据,那我们就可以开始构建高大上的多尺度 ASPP FPN 并训练强大的模型了吗?当然还不到时候,这是一个充满荆棘的道路。我们下一步需要构建一个完整的训练、评估架构,并通过一系列实验确定我们对准确率的置信度。

在这个阶段,你们最好选择一些不会出错的简单模型,例如线性分类器或非常精简的 等。我们希望训练这些模型,并可视化训练损失、模型预测和其它度量指标(例如准确率)。当然在这个过程中,我们还需要基于一些明确假设,从而执行一系列对照实验( )。

该阶段的一些技巧与注意事项:

3. 过拟合

到了这个阶段,我们应该对数据集有所了解了,而且有了完整的训练+评估流程。对于任何给定的模型,我们可以计算出我们信任的度量。而且还为独立于输入的基线准备了性能,一些 dumb 基线的性能(最好超过这些),我们人类的表现有大致的了解(并希望达到这一点)。现在,我们已经为迭代一个好的模型做好了准备。

我准备用来寻找好模型的方法有两个阶段:首先获得足够大的模型,这样它能够过拟合(即关注训练损失),然后对其进行适当的正则化(弃掉一些训练损失以改进验证损失)。我喜欢这两个阶段的原因是,如果我们不能用任何模型实现较低的误差率,则可能再次表明一些问题、bug 和配置错误。

该阶段的一些技巧与注意事项:

4. 正则化

理想情况下,我们现在至少有了一个拟合训练集的大模型。现在是时候对它进行正则化,并通过放弃一些训练准确率来提升验证准确率了。技巧包括:

最后,为了更加确保网络是个合理的分类器,我喜欢可视化网络第一层的权重,确保自己获得了有意义的边缘。如果第一层的滤波器看起来像噪声,那需要去掉些东西。类似地,网络内的激活函数有时候也会揭示出一些问题。

5. 精调

现在你应该位于数据集一环,探索取得较低验证损失的架构模型空间。这一步的一些技巧包括:

6. 最后的压榨

一旦你找到最好的架构类型和超参数,依然可以使用更多的技巧让系统变得更好:

结论

一旦你做到了这些,你就具备了成功的所有要素:对神经网络、数据集和问题有了足够深的了解,配置好了完整的训练/评估体系,取得高置信度的准确率,逐渐探索更复杂的模型,提升每一步的表现。现在万事俱备,就可以去读大量论文,尝试大量实验并取得 SOTA 结果了。

最后说下文章下载方式:

323AI导航网发布

© 版权声明
广告也精彩

相关文章

暂无评论

暂无评论...