墨得问题-智能ai辅助工具 一文看懂人工智能(AI的本质+发展史+局限性)

默认分类10个月前发布 admin
4,310 0
ChatGPT国内版

人工智能和 AI 已经走入了普通大众的视野,我们在生活中可以看到很多跟 AI 相关的产品。比如 Siri、AI 拍照、AI 修图…虽然大家看得多,但是大部分都是一知半解。到底什么是人工智能?他有什么神奇的地方?未来会发展成什么样?本篇文章将完整的解答大家的问题。文章内容会让不懂技术的朋友也能轻松的看懂。

「 排除 90% 的误解 」关于人工智能,你需要知道的3个重点

大家都看过或者听说过类似的言论或者电影:

人工智能很危险!AI 对人类是威胁!(甚至有人给出了具体的时间点)机器人会占领的地球,人类将变为机器人的奴隶!……

请大家放100个心,不要神话人工智能,科幻电影里的剧情以目前的技术发展来看,完全不可能!

这种担心就好像玛雅人预测2012年地球将毁灭一样!

人工智能(AI)本质上是一种工具

那么我们应该如何正确的看待人工智能(AI)?

AI 跟我们使用的锤子、汽车、电脑……都一样,其本质都是一种工具。

工具必须有人用才能发挥价值,如果他们独立存在是没有价值的,就想放在工具箱里的锤子一样,没有人挥舞它就没有任何价值。

人工智能本质上是一种工具工具之间也有差别

虽然锤子、汽车、电脑、AI 都是工具。但是他们还是有差别的。

他们最核心的差别就是效能(更准确的说应该是杠杆率)。我们把上面几个工具的使用场景对比一下就能理解了:

锤子:

用过锤子的人都知道,为了钉一个钉子,大部分的力还是人出的。

锤子的使用场景中,人出了1份力,得到了2倍的回报。

汽车:

人类跑步20分钟达到的距离,汽车2分钟就能搞定!而且这个过程中人类不需要出太多力气。

汽车的使用场景中,人出了1份力,得到了10倍的回报。

电脑:

人类自己计算一些复杂的问题可能需要花1个月甚至更久的时间(还不一定正确),而电脑可能只需要1秒就完成了,并且精确无误!而人们使用电脑只需要敲几下键盘,点几下鼠标就可以了。

电脑的使用场景中,人出了1份力,得到了1,000,000倍的回报。

人工智能:

人工智能其实是超越了之前电脑的边界,以前电脑无法做的事情 AI 可以做了。所以从杠杆率上讲,人工智能和电脑是在一个量级上的,但是它能做的事情更多了,大大超越了传统电脑的能力范围,所以大家十分看好。

但是(凡是都有但是),AI 在很多很多场景和领域还是没有价值,很多能力甚至不如小学生。所以,目前 AI 的局限性依然很大!

所有人都应该知道的关于 AI 的3个重点?

人工智能(AI)的本质是一种工具,归根结底还是需要人去使用它。虽然有些场景 AI 已经超越人类了(比如 下围棋),但是还是有很多很多的场景,AI 没什么价值(推荐深度好文《人工智障 2 : 你看到的AI与智能无关》)。AI 不是万能(通用)的,擅长下围棋的 AI 不能跟人聊天,擅长聊天的 AI 不能下围棋。大家在电影里看到的啥都会的机器人短期内还无法实现。

「 什么是人工智能? 」跟普通程序对比,深入了解 AI

开门见山的给出人人都能听懂的解释:

人工智能(AI)是一种高级的计算机程序AI 有明确的目标AI 可以“看到”或者“听到”环境的变化,可以感受到环境的变化他会根据不同的环境做出不同的反应,从而实现既定的目标。

简单的说清楚AI是什么下面是书面语的版本,看着更严谨(装逼)一些:

人工智能( ,简称AI)是计算机科学下的一个分支。某些方面像人一样,AI 可以“看到”和“听到”环境的变化,同时可以根据环境的变化做出合理的判断和行动,从而实现某些目标。

下面就针对“环境感知”、“合理判断”和“实现目标”3个层面来详细对比一下普通的计算机程序和人工智能:

普通程序人工智能感知环境普通程序只知道这是一张图片或者视频,但是并不知道里面的内容是什么。AI 可以“理解”图片和视频内有什么内容,AI 也可以“理解”听到的声音是什么意思。合理判断普通程序是很多死规则的组合,在任何情况下都只能按照死规则走。AI 可以主动优化自己的规则,也就是大家常说的“学习”,但跟人类的学习还是有很大差异!实现目标普通程序是没有目标感,只会根据规则自动运行。AI 是可以有“目标感”的,并通过反馈不断优化自己的的行为来更好的实现目标。虽然上面的对比让 AI 看上去很强大,但是实际上并非如此,AI 在某些场景表现的很好,但是在某些场景表现的很不理想。

AI 并没有想象中强大,它也会犯低级错误

AI 的确具备了理解图片、视频和语音(非结构化数据)的能力,但并不代表这些能力已经很强大的。AI 经常犯一些低级错误,下面就是一个具体的案例:

AI没有想象中强大,有时会犯很低级的错误左:摩托车的遮挡让 AI 把一只猴子误认为人类。中:自行车的遮挡让 AI 把猴子误认为人类,同时丛林背景导致 AI 将自行车把手误认为是鸟。右:吉他把猴子变成了人,而丛林把吉他变成了鸟

墨得问题-智能ai辅助工具 一文看懂人工智能(AI的本质+发展史+局限性)

上图显示了在一张丛林猴子的照片中 ps 上一把吉他的效果。这导致深度网络将猴子误认为人类,同时将吉他误认为鸟,大概是因为它认为人类比猴子更可能携带吉他,而鸟类比吉他更可能出现在附近的丛林中。

AI 对数据的依赖相当于人类对空气的依赖

目前(截止到2019年)是深度学习最流行的时代,深度学习在各个领域虽然表现出了很强大的能力,但是并不是人人都能玩转深度学习的,因为它需要海量的带标注的数据,这种条件不是人人都具备的。

简单的做一个类比,狮子的力量很强大,狗的力量相比较就弱小很多。虽然狮子的战斗力很强,但是狮子需要吃很多东西才能保持战斗力。而狗就不需要吃那么多的东西。如果不给狮子吃足够的东西,他可能会躺在地上完全丧失战斗力。

深度学习就类似狮子,想让他发挥出战斗力,就需要给他喂养大量的数据(相当于狮子的食物)。不然再出色的深度学习模型都无法发挥任何价值。

AI需要大量数据才能发挥价值狮子对食物也是比较挑剔的,不是给他吃啥都行的,而深度学习更是如此!

数据是否有标注、数据是否“干净”、数据是否有多样性……都对深度学习的学习结果影响巨大!

总结一下的话:

深度学习时代的 AI 对数据量级要求极高深度学习时代的 AI 对数据规范要求极高

像 这种拥有海量数据的公司最容易在 AI 领域有较大的突破和优势,而一般的小公司很难跨越数据的门槛。

人工智能的发展历史

AI 不是什么全新的东西,他已经发展了大几十年了!下面我们介绍一下最具代表性的3个发展阶段。

上图是从1950年至2017年之间,人工智能领域出现的一些里程碑式的事件。总结下来会分为3大阶段:

第一次浪潮(非智能对话机器人)

20世纪50年代到60年代

1950年10月,图灵提出了人工智能(AI)的概念,同时提出了图灵测试来测试 AI。

图灵测试提出没有几年,人们就看到了计算机通过图灵测试的“曙光”。

1966年,心理治疗机器人 ELIZA 诞生

那个年代的人对他评价很高,有些病人甚至喜欢跟机器人聊天。但是他的实现逻辑非常简单,就是一个有限的对话库,当病人说出某个关键词时,机器人就回复特定的话。

第一次浪潮并没有使用什么全新的技术,而是用一些技巧让计算机看上去像是真人,计算机本身并没有智能。

第二次浪潮(语音识别)

20世纪80年代到90年代

在第二次浪潮中,语音识别是最具代表性的几项突破之一。核心突破原因就是放弃了符号学派的思路,改为了统计思路解决实际问题。

在《人工智能》一书中,李开复详细介绍了这个过程,他也是参与其中的重要人物之一。

第二次浪潮最大的突破是改变了思路,摒弃了符号学派的思路,转而使用了统计学思路解决问题。

第三次浪潮(深度学习+大数据)

21世纪初

2006年是深度学习发展史的分水岭。杰弗里辛顿在这一年发表了《一种深度置信网络的快速学习算法》,其他重要的深度学习学术文章也在这一年被发布,在基本理论层面取得了若干重大突破。

之所以第三次浪潮会来主要是2个条件已经成熟:

2000年后互联网行业飞速发展形成了海量数据。同时数据存储的成本也快速下降。使得海量数据的存储和分析成为了可能。

GPU 的不断成熟提供了必要的算力支持,提高了算法的可用性,降低了算力的成本。

深度学习引领了第三次AI浪潮在各种条件成熟后,深度学习发挥出了强大的能力。在语音识别、图像识别、NLP等领域不断刷新纪录。让 AI 产品真正达到了可用(例如语音识别的错误率只有6%,人脸识别的准确率超过人类,BERT在11项表现中超过人类…)的阶段。

第三次浪潮来袭,主要是因为大数据和算力条件具备,这样深度学习可以发挥出巨大的威力,并且 AI 的表现已经超越人类,可以达到“可用”的阶段,而不只是科学研究。

人工智能3次浪潮的不同之处

前两次热潮是学术研究主导的,第三次热潮是现实商业需求主导的。前两次热潮多是市场宣传层面的,而第三次热潮是商业模式层面的。前两次热潮多是学术界在劝说政府和投资人投钱,第三次热潮多是投资人主动向热点领域的学术项目和创业项目投钱。前两次热潮更多时提出问题,第三次热潮更多时解决问题。

想进一步了解 AI 的历史,推荐阅读李开复的《人工智能》,上面关于3次浪潮的内容都摘抄自这本书,想看这本书的可以点击下面的购买链接。

人工智能今天和未来的局限在哪里?

在探寻 AI 的边界时,我们可以先简单粗暴的把 AI 分为3类:

弱人工智能强人工智能超人工智能

墨得问题-智能ai辅助工具 一文看懂人工智能(AI的本质+发展史+局限性)

弱人工智能、强人工智能、超人工智能弱人工智能

弱人工智能也称限制领域人工智能( AI)或应用型人工智能( AI),指的是专注于且只能解决特定领域问题的人工智能。

例如:、Siri、……

强人工智能

又称通用人工智能( )或完全人工智能(Full AI),指的是可以胜任人类所有工作的人工智能。

强人工智能具备以下能力:

超人工智能

假设计算机程序通过不断发展,可以比世界上最聪明,最有天赋的人类还聪明,那么,由此产生的人工智能系统就可以被称为超人工智能。

我们当前所处的阶段是弱人工智能,强人工智能还没有实现(甚至差距较远),而超人工智能更是连影子都看不到。所以“特定领域”目前还是 AI 无法逾越的边界。

人工智能未来的边界是什么?

如果在深入一点,从理论层面来解释 AI 的局限性,就要把图灵大师搬出来了。图灵在上世纪30年代中期,就在思考3个问题:

世界上是否所有数学问题都有明确的答案?如果有明确的答案,是否可以通过有限的步骤计算出答案?对于那些有可能在有限步骤计算出来的数学问题,能否有一种假象的机械,让他不断运动,最后当机器停下来的时候,那个数学问题就解决了?

图灵还真设计出来一套方法,后人称它为图灵机。今天所有的计算机,包括全世界正在设计的新的计算机,从解决问题的能力来讲,都没有超出图灵机的范畴。

(大家都是地球人,差距怎么就这么大呢???)

通过上面的3个问题,图灵已经划出了界限,这个界限不但适用于今天的 AI ,也适用于未来的 AI 。

下面我们再进一步把边界清晰的描述一下:

AI 可以解决的问题其实非常局限

世界上有很多问题,只有一小部分是数学问题在数学问题里,只有一小部分是有解的在有解的问题中,只有一部分是理想状态的图灵机可以解决的在后一部分(图灵机可解决的部分),又只有一部分是今天的计算机可以解决的而 AI 可以解决的问题,又只是计算机可以解决问题的一部分。

担心人工智能太强大?你想多了!

在一些特定场景中, AI 可以表现的很好,但是在大部分场景中,AI 并没有什么用。

如何客观的看待人工智能?

技术总是在短期内被高估,但是在长期又被低估。

24%的人担心机器人会从人类手里接管地球PEGA 做过一项调查,涉及了全球 6000 多个普通消费者,询问他们对 AI 的看法,有下面一些结果:

查看更多调查结果,可以访问《What think about AI: A study》【附带1分钟视频】

AI 已经来了,并且会飞速发展

我们每天都在使用的输入法就使用了很多 AI 相关的技术,但是很多人并不知道。不要小看输入法里使用的这些技术,它能使我们的打字效率大大提高,如果没有这些技术,我们会多花数百年的时间在打字上!

除了输入法,大家都使用过的 AI 产品还有:

如果我不说相信大家并不知道 AI 已经进入我们生活的方方面面了。而且 AI 在未来几十年还会对各行各业产生巨大的影响。

我们需要以开放的心态拥抱 AI,大部分情况下它都是人类的朋友,而不是敌人。

AI 并没有我们想象中那么厉害

在围棋上碾压人类 战胜李世石,这个热点几乎所有人都知道。很多人通过这件事情开始担心 AI 未来对人类的威胁。

而现实是 不管下围棋有多厉害,对我们的生活都没有半毛钱的关系,那只是一场秀。但是大众会根据这件事做对 AI 产生偏见:

不要担心 AI 会取代你的工作

在“人工智能威胁论”里,大家最担心的是 AI 会取代大量的工作岗位,导致大量普通老百姓失业。

这件事的确会发生:

但是,这是一件好事:

简单总结一下:

可见的未来,AI 还是一种工具AI 跟计算机、互联网一样,是历史潮流,我们要了解它、适应它、利用它AI 的确会取代部分岗位,但是会出现更多新职业,不用担心下岗问题谁能更高效的跟 AI 协作,谁的价值就会越大

© 版权声明
广告也精彩

相关文章

暂无评论

暂无评论...