中新社北京2月28日电 (记者 夏宾)由美国人工智能公司推出的大语言模型吸引了全球目光,其热度在中国也持续高涨。有人发出疑问,中国离自己的还有多远?
全国政协委员、360集团创始人周鸿祎对中新社记者表示,如果把看作“能与人类对话”的机器人,那就太“小儿科”了。它的出现,或许是人工智能发展史上的一个拐点。
中国科学院院士、半导体物理和器件专家褚君浩则认为,大热的是如今新业态、新技术快速迭代发展的缩影之一,但也绝非终点。
追赶新技术发展,中国如何能拥有自己的?
事实上,数据显示,中国数字经济规模连续多年稳居世界第二,新的商业模式、应用场景、增长动能不断涌现。
全国政协委员、天娱数科副总经理贺晗指出,中国科技企业目前更多注重实际场景运用,这与经济发展阶段有关,当下中国有大量的传统行业需要迅速借助数字化实现生产力提升。但长远来看,底层技术能力的欠缺会限制产业数字化的发展空间,甚至,类似大规模预训练模型本身也会成为“卡脖子”技术。
全国政协委员、致公党上海市委会专职副主委邵志清在采访中谈到的国产化问题时表示,现象反映出两个问题:一是中国的商业奇才,也就是企业家精神还需要不断锻炼;二是底层技术突破,也就是科技自立自强还有很多路要走。
他也强调,中国的优势在于拥有大规模的应用市场和海量的数据,如果能在底层技术和商业模式上有更多的奇才,那么相信未来的中国式或是超越的模式就会产生。
“我们需要认识到以为代表的人工智能技术也是‘硬科技’,必须在国家层面上升到和芯片产业同等重要的地位和高度。”河南省政协委员、麒麟合盛集团创始人李涛说。
在他看来,目前,该技术还依赖高性能的GPU芯片所建成的GPU服务器集群,但在可预见的将来,人工智能和芯片设计会形成软硬件相互促进的合力,一旦这种能力爆发出来,中国可能需要十至二十年的时间才能追赶上。
当下,中国自身的优势在哪?又该如何奋起直追?周鸿祎认为,需要用户不断使用、反馈、修正,它的能力才可以不断提升。中国的优势包括互联网大公司比较多、算力较好、工程师红利等。
他今年带来的《关于以产研协同和开放生态模式推进人工智能大模型技术创新发展的提案》建议,大型科技企业+重点科研机构的产研协同创新模式,打造中国的“微软+Open AI”组合引领大模型技术攻关;支持设立多个国家级人工智能大模型的长期开源项目,打造开源众包的开放创新生态。
针对目前中国人工智能领域与的差距,李涛建议发挥中国举国体制优势,积极弥补短板,加快追赶世界先进水平。
具体来看,一是制定国家战略和路线图,加强顶层规划设计。二是重视人工智能基础技术和创新研究,加快核心人才培养。三是扶持建设替代产品所需的“算力”“算法”“数据”等新型基础设施。四是优化政府集中采购制度,支持科技创新型企业发展。
李涛提到,算力层面,要鼓励行业创新,在现有资源的条件下,找出创新方式,缩小算力差距;算法层面,要加强人工智能科研与产业的结合,寻找对算力消耗更小的人工智能算法;数据层面,要整合行业力量,建立起一套高质量的、用于人工智能超大模型训练的数据库。
贺晗希望,相关行业主管部门通过规划指引、财政补贴、试点示范、揭榜挂帅、产业基金等方式,鼓励科技企业围绕算法模型开源、开源数据集建设、数据要素共享流通、中英文数据互补、智能算力集群建设等关键点进行长期投入,加快数据、算法、算力基础设施建设,形成生态。(完)