ai智能系统 一文读懂智能客服:发展历程、系统搭建、市场推广

默认分类1年前 (2023)发布 admin
1,037 0
ChatGPT国内版

在人工智能领域,智能客服是比较容易落地,且技术比较成熟的一项应用实践。本文以智能客服为对象,梳理了它的发展历程、系统搭建、市场推广。enjoy~

2018 I/O开发者大会上,谷歌演示了对话机器人。

完成了两项任务:

实际上,扮演的就是智能客服的角色。

在人工智能领域,智能客服应该是比较容易落地,而且技术比较成熟,这是因为客服领域的场景路径具有相对明确的特征,决定了基于全量数据进行高并发需求处理的人工智能在客服领域将大有可为。

目前,基于大数据、云计算和深度学习等领先的人工智能技术,智能客服已经可以实现自主问答、业务办理、故障诊断等一系列复杂操作,实现客服行业中大部分的应答需求,快速高效的解决用户问题。

据2018年5月发布的《中国智能客服行业研究报告》统计,中国大约有500万全职客服,以年平均工资6万计算,再加上硬件设备和基础设施,整体规模约4000亿元。

如此巨大的市场,当然会使得众多企业对于智能客服趋之若鹜。但是为什么到现在还没有一家独角兽公司出现?

虽说这是人工智能中最容易落地、技术相对成熟的项目,但相关企业如果想开发和构建一套人工智能客服系统,到底要投入多大的成本?

一家企业是自己搭建一套智能客服系统,还是找到一家合适的智能客服平台厂商,站在“巨人”的肩膀上,利用它们赋予的能力,搭建自己的智

能客服解决方案。

今天我们好好聊聊。

一、客服系统的发展历程

中国客服软件市场大致经历了三个发展阶段:传统呼叫中心软件、PC网页在线客服+传统客服软件、云客服+客服机器人的智能客服阶段。

从当前客服产业链构成情况来看,上游基础设施环节已经发展成熟,少数巨头垄断市场。未来,他们会继续向下游延伸,构建企业服务生态。

中游客服产品提供商中,云客服厂商经过几年竞争,头部几家已脱颖而出,但仍未长出巨头,竞争依然激烈。产品功能更加丰富,应用场景也从客服延伸到了销售、营销等多个环节,另一方面,客服机器人通过辅助人工,以及回答简单重复性问题,大大提高了人工客服的工作效率。同时,AI也在从各个环节上变革着企业客服的交互方式,加速线上线下客服的智能化升级。

二、智能客服系统搭建

智能客服系统主要基于自然语言处理、大规模机器学习、深度学习技术,使用海量数据建立对话模型,结合多轮对话与实时反馈自主学习,精准识别用户意图,支持文字、语音、图片等富媒体交互,可实现语义解析和多形式的对话。

任务对话服务:

ai智能系统 一文读懂智能客服:发展历程、系统搭建、市场推广

定制化服务,通过与用户的多轮交互,实现快递查询、订餐、医生预诊等服务类功能。

业务咨询服务:

通过QA知识库,快速回复用户问题咨询服务。解决常见问题的解答。

2. 智能客服系统的技术构架

(1)基于知识库回答的智能客服系统

基于知识库回答的智能客服系统, 使用的检索或者分类模型来实现的。

检索式回答的流程是:

在实际应用中,我们还会设置阈值来保证回答的准确性,若最终每个问题的得分低于阈值,会将头部的几个问题以列表的形式返回给用户,最终用户可以选择他想问的问题,进而得到具体的答案。

(2)基于槽位填充的多轮对话系统

搭建基于槽位的对话系统是一个相对专业而复杂的过程,通常分三个主要的阶段。首先是需求分析,然后是使用平台搭建 BOT,最后是持续优化。

了解该系统我们先熟悉一下几个名词的释义:

1)意图

意图是指用户在语音交互中发出的主要请求或动作。

意图示例:

2)技能

技能是满足用户特定需求的一个应用。例如用户说“查询我的洗发水快递到哪里了”时,会进入快递查询的技能。

3)问答型技能

通过Q(用户问法)和A(机器人回答)的配置,可以实现简单的用户与机器人的对话。

ai智能系统 一文读懂智能客服:发展历程、系统搭建、市场推广

任务型技能:在问答型技能的基础上,增加槽位、API(接口)调用等高级功能,可以通过配置,来实现用户查询信息、问题搜索或者其他功能。

4)词典

某个关键词可能变化的内容,例如时间词典,位置词典。

语义槽:语义槽是用户说法中包含的关键词,它可以帮助系统准确识别意图,例如星座语义槽包含12星座的名称。语义槽和词典一般会同时使用,语义槽通常用来指代词典。一个语义槽可以同时绑定多个词典,一个词典也可以与不同的语义槽相关联。

5)追问

当用户问法中没有提供该语义槽值时,机器人要对其自动发起追问。

例如用户问:天气怎么样?我们无法获取到查询天气的地点的语义槽值,就需要机器人追问,您想获取哪里的天气信息?,追问话术一般设置多条,随机追问。

在国内开放的bot系统中,百度UNIT和微信的对话开放平台就是应用的该技术框架。

一个自然语言对话系统,理解的核心任务是对意图的解析和对词槽的识别。

例如:订明天早上8点北京到石家庄的火车,在这个例子中,对于用户表达的一句话,它的意图是要订火车票,其中涉及的词槽包括出发地、目的地、时间。当这个时间有多趟车次的时候,就需要进行追问用户,是要订哪一个。

以百度UNIT平台为例,搭建一个买票智能回复的流程。

需求分析:订火车票需要知道时间、出发地、目的地新建一个BOT,命名为:火车票新建对话意图:命名订票添加词槽:出发时间、选择系统词槽词典,选择然后选择系统词典 (时间),出发地词槽、目的地词槽,这两个都可以选择系统词典,这些都是必填项。设置词槽与意图关联属性,这里火车票的出发时间是订票里必须的关键信息,所以选择必填。澄清话术就是当用户表达订票需求的语句里缺少出发时间时 bot 主动让用户澄清的话术。还可以设置让用户澄清多少轮后放弃要求澄清,默认是 3 次。设置 BOT 回应,BOT 回应就是当 BOT 识别出用户的意图和所有必填词槽值时给用户的反馈。对于订票回复一般对接API接口,实现自动生成方式。

当然,这只是火车票中的一个场景,在火车票这个场景中还有退票、改签、查询等功能。这些都是需要我们在需求梳理中要确定的。

3. 如何评判一个智能客服系统的好坏

(1)基于人工标注的评价

基于问答知识库来回答的系统,回答能力受限于知识库的丰富程度,也就是说知识库对用户问题的覆盖率,覆盖率越高,准确性越高。

因此并非能回答用户的所有问题,系统最佳的状态是将能回答的全部回答准确,不能回答的全部拒识,即拒绝回答。

因此这里的评价指标包括有问题解决率、拒识率、召回率和准确率等,我们的目标是让系统的有结果率无限接近数据的真实有结果率,召回率和准确率尽量高。

通过从每日的全量数据集中抽样出一个小数据集,保证小数据集的数据分布尽量符合全量数据集,然后由标注团队对数据集做标注,标注出每个问题的实际答案,一般标注完成后还有质检的环节,以保证标注结果尽量准确,这样便生成了每日数据的标准评测集。

基于该标准评测集我们会去评价系统的好坏,并且每次做新模型迭代时都会使用标准评测集去评价新模型,只有新模型达到某个指标才可以上线。

© 版权声明
广告也精彩

相关文章

暂无评论

暂无评论...