ai的标注工具在哪里 什么是人工智能的数据标注?挑战是什么?

默认分类1年前 (2023)发布 admin
1,538 0
ChatGPT国内版

数据标注是大多数人工智能的基础,它决定了机器学习和深度学习模型的质量。今天的数据呈现指数级的爆发,比如仅在2018年,就产生了超过30 ZB的数据。而在在任何人工智能项目中,对于数据科学家而言,数据问题都是其中的症结所在。

什么是数据标注?

训练机器学习和深度学习模型,需要丰富的数据,以便将其用于部署,训练和调整模型。训练机器学习和深度学习模型需要大量经过仔细标注的数据。标注原始数据并准备将其应用于机器学习模型和其他AI工作流,被称为数据标注。根据相关统计,数据整理在AI项目中消耗了80%以上的时间。

数据如何标注?

ai的标注工具在哪里 什么是人工智能的数据标注?挑战是什么?

如今,大多数数据都没有标注。带标签的数据,意味着标注或注释目标模型的数据,以便可以预测。通常,数据标注包括数据标注,注释,审核,分类,转录和处理。

标注的数据突出显示某些特征,并根据这些特征对其进行分类,可以通过模型分析其模式以预测新的目标。例如,对于自动驾驶汽车中的计算机视觉,AI专业人员或数据标注者可以使用视频标注工具来指示路牌的位置,并通过行人和其他车辆的位置来训练模型。

数据标注中包含的一系列任务:

AI专业人员的数据标签挑战?

ai的标注工具在哪里 什么是人工智能的数据标注?挑战是什么?

在典型的AI项目中,专业人员在进行数据标注时会遇到以下几个方面的挑战。

谁来标注数据?

相关调查显示,2019年,企业在数据标签上的支出超过17亿美元。到2024年,这一数字将达到41亿美元。进行数据标注工作,除了雇佣专业的数据科学家和AI专家之外,还可以考虑通过其他方式。

雇员。这包括雇用包括AI专业人员在内的全职或兼职员工,参与AI项目的各个方面,其中之一是数据标注。

托管团队。他们是经验丰富,且训练有素的数据标签团队。

© 版权声明
广告也精彩

相关文章

暂无评论

暂无评论...