本篇文章是来自三位大佬级人物的翻译作品,从一个大模型是否会吃掉整个AI生态的问题出发,用(工作流)和Value(价值)这两个衡量标准来预测未来AI生态格局。希望能够给大家带来启发。
今天看到了一篇不错的文章《Does One Large Model Rule Them All? on the AI 》,这篇文章的三位作者都是大佬级的人物,分别是谷歌前CEO Eric 、的首席科学家同时也是斯坦福教授的Matei 和 AI创始人 Raghu。这篇文章从一个大模型是否会吃掉整个AI生态的问题出发,用(工作流)和Value(价值)这两个衡量标准来预测未来AI生态格局。以下是这篇文章的翻译,基本都由GPT-4完成,希望给大家有所启发和思考。
导语
过去的10年里,人工智能不断取得进展,每一波新的发展都带来了令人兴奋的新功能和应用。最大的一波无疑是最近出现的单一通用人工智能模型,例如大型语言模型(LLMs),它们可以用于执行多种多样的任务,从代码生成、图像理解到科学推理等。
这些任务的执行质量之高,以至于一整代新的技术应用正在被定义和开发。尽管考虑到潜在的影响,这令人兴奋不已,但这种飞速的成功确实让我们对未来的人工智能生态系统产生了一个深度的不安问题:
未来的人工智能领域是否会被单一通用AI模型所主导?
具体来说,未来的人工智能领域是否会:
由少数(这些通用AI模型是否会成为驱动所有重要技术AI进步和产品的关键组件?
随着类似和GPT-4等模型的发布,这些模型已经改变了我们对AI能做什么的理解,以及开发这类模型的成本不断上升,这已经成为一种普遍的观点。
然而,我们持相反的看法!
将会有很多公司为AI生态系统的发展做出贡献。并且,许多具有高实用性的AI系统将出现,它们将不同于(单一)通用AI模型。这些AI系统在结构上将非常复杂,由多个AI模型、API等驱动,并将推动新的技术AI发展。针对明确定义的、高价值的工作流程,主要将由专用AI系统而非通用AI模型来解决。
我们可以用以下示意图来说明我们对AI生态系统的预测:
假设我们将所有适用于基于AI的解决方案的工作流程按照“价值”降序排列。价值可以是潜在收入,也可以是对用户的实用性。会有少量非常高价值的工作流程,例如一个庞大的市场或者拥有大量用户且明确可通过AI解决的痛点。这将衍生出一长串繁杂但价值较低的工作流程,代表了许多AI可以协助的定制预测任务。
高价值工作流程的例子有哪些?虽然还很早,但我们已经看到了编码助手、视觉内容创作、搜索和写作助手等方面的令人兴奋的发展。
那么,低价值工作流程的重尾部分呢?这些将是不太明确的定制需求,源于特定的情境。例如,通过分类对客服机器人的请求进行分级处理。
我们预测,在图表的左上角(高价值工作流程)将由专业化AI系统主导,随着我们沿着蓝色曲线下降至较低价值的工作流程,通用AI模型将成为主导方法。
乍一看,这个画面似乎违反直觉。一些最先进的AI能力似乎来自通用模型。那么为什么这些模型不主导高价值工作流程呢?但是,通过思考生态系统可能的演变,有一些重要因素支持这个观点,我们将在下面详细展开。
01. 专业化对于质量至关重要
高价值工作流程需要高质量,并奖励任何质量的提升。应用于高价值工作流程的AI解决方案会不断调整以提高质量。由于工作流程特定的问题导致质量差距,这种调整将导致专业化。
专业化可以简单地通过针对特定工作流程的数据进行调优,或者(更可能)开发多个专业化的AI组件。
我们可以通过考虑当前用于自动驾驶汽车的AI系统来具体说明。这些系统有多个AI组件,从规划组件到检测组件,以及数据标注和生成组件。将这个专业化的AI系统用类似GPT-4的通用AI模型替换,将导致质量急剧下降。
但是,更先进的通用AI模型,如GPT-(4+n),能否战略性地执行此工作流程?
我们可以进行一个思维实验来展示这可能如何发展:
虽然这个思维实验可能不完全准确,但它说明了我们可能从通用AI模型开始,然后大量地专门化它以提高质量。
总之: